长沙专业小程序开发
小程序开发价格 你的位置:长沙专业小程序开发 > 小程序开发价格 >

小程序开发价格 空间微重力下细胞力学感知

发布日期:2024-08-30 17:21    点击次数:112

田然,吴欣童小程序开发价格,孙联文

(北京航空航天大学 生物与医学工程学院;生物力学与力生物学阐述部重心试验室;北京市生物医学工程高精尖革命中心, 北京 100191)

地球上的生命永久方于重力下助长发育,空间微重力环境对机体产生的“不利”影响是东说念主类历久驻留深空的广大挑战。历久微重力或超重引起的机体功能变化时常是由算作生命结构和功能基本单元的细胞功能转换引起。空间在轨细胞试验泄露,包括成骨细胞、破骨细胞、成纤维细胞、内皮细胞、心肌细胞、巨噬细胞、平滑肌细胞、神经元、干细胞等在内的数十种细胞均能反馈微重力,细胞的花样、增殖、分化、凋一火、黏附、迁徙、细胞信号通路、基因抒发等皆会发生变化[1-2]。另一方面,重力场下,绝大大量细胞功能受到力学载荷(流体剪切、牵张、压力等)的调控。微重力下细胞对力学载荷的反馈在生理功能的恰当性转换中也应起着迫切作用。因此,关爱微重力下细胞对力学载荷的反馈才能的变化及机制,可为惩处航天员的留心穷困提供新的表面和武艺。举例,将在大地抗争废用性骨丢失的率领磨真金不怕火武艺用于空间的恶果不睬想,有可能是由于骨组织细胞力学明锐性着落导致。因此,若何进步细胞对力学载荷的反馈,大意能为抗争失重性骨丢失提供一个新想路[3]。

现在,细胞骨架被渊博以为是细胞感知重力变化的关节结构[4-7]。同期,其在细胞反馈力学载荷中也起着迫切作用。细胞骨架可将胞外力学信号远距离传至细胞核,成功影响基因转录和卵白合成。预应力在这种力传导中也起着迫切作用,对细胞施加的力学载荷可通过整合素、细胞骨架直达细胞核,引起核仁应变,该应变与细胞预应力呈正干系[8-9]。

1微重力对细胞骨架-LINC复合物-核纤层的影响

1.1微重力对细胞骨架的影响

在我国神舟、推论、天舟系列任务,以及好意思国航空航天局(NASA)、俄罗斯联邦航天局(Roscosmos)、加拿大航天局(CSA)、欧洲宇航局(ESA)、日本天地航空磋商树立机构(JAXA)开展的多项空间细胞学磋商中,细胞骨架的结构变化常被算作指征空间微重力下细胞功能变化的迫切打算。本课题组先前回来了空间遨游对细胞骨架及干系功能的影响[10]。本文主要对空间遨游中细胞骨架结构的变化进行简要回来。

1.1.1骨组织细胞 成骨细胞是现在已开展的空间细胞试验中关爱最多的一种细胞。尽管各磋商中细胞资历的空间微重力时长不同,检测的成骨打算相反,但共同的论断是成骨细胞花样转换、细胞骨架重排以及黏着斑减少。STS-76搭载小鼠成骨细胞MC3T3-E1空间遨游29 h后,细胞微丝呈现拉伸变长的趋势、细胞核变长[11];Foton11/12科学卫星搭载大鼠成骨细胞ROS 17/2.8资历2~4 d遨游后,细胞微丝和黏着斑发生解聚[12];Foton M3卫星搭载的大鼠颅骨成骨细胞资历5 d空间遨游后,应力纤维变细,微管变短、迂回,黏着斑数目减少[13];STS-65搭载大鼠骨髓成骨细胞遨游4~5 d后,微管构成卵白α-Tubulin的mRNA水平着落了50%[2]。

1.1.2肌肉组织 细胞空间试验主要集合在成肌细胞,额外所以细胞骨架动态重排为基础的细胞交融历程[14]。STS-45搭载大鼠成肌细胞L8遨游7~10 d后,成肌细胞不行交融和分化成肌管(myotube)[15]。我国神舟10号飞船上搭载的成肌细胞C2C12遨游96 h后,成肌特异性中间丝骨架结卵白Desmin阳性的细胞减少,肌管交融率较宽泛重力下显贵减少[16]。

1.1.3血管组织细胞 我国推论-10号上培养的血管内皮细胞EA.hy 926遨游3 d和10 d后,微丝、微管卵白减少,中间丝波形卵白增多,细胞膜下出现微丝的辘集,核周出现中间丝的辘集[17]。定约号TMA-11上搭载的东说念主脐静脉内皮细胞遨游12 d后,微管在细胞边际集合[18]。近期在国外空间站培养心血管前体细胞12 d后,细胞骨架干系卵白,包括波形卵白基因vim、结卵白基因des、核纤层卵白基因lmnb/a等抒发上调,细胞力学传导干系的通路YAP1-hippo基因抒发下调,Wnt/calcium通路上调[19]。

1.1.4免疫组织细胞 STS-76任务中T细胞空间遨游4 h后,微管的纤维结构迷漫,微管组织中心变得不明晰[7]。Maxus 2遨游中的T细胞的细胞骨架重塑,出现较多的束状中间丝[20]。在国外空间站(Kubik Bio 1技俩)单核细胞J-111遨游24 h后,微丝F-actin的荧光密度着落、呈现向细胞边际的永诀趋势;微管结构解聚、核周微管变精采,且在细胞膜隔壁出现了短小的、树枝状微管;黏着斑卵白伴跟着微丝结构,在细胞膜下辘集[21]。

1.1.5干细胞 在国外空间站(“Stroma-2”磋商技俩)培养骨髓间充质干细胞9 d后,骨架干系基因下调,科学家以为细胞骨架的解聚可能是骨髓间充质干细胞神经向分化的启动诱因[2,23]。神经干细胞经由SpaceX-16上行至国外空间站,微重力环境下培养39.6 d后,细胞的微管卵白抒发缩小,中间丝Nestin抒发加多[24]。

1.2微重力对LINC复合物-核纤层的影响

LINC复合物是细胞核和周围细胞骨架之间的桥梁,它将核纤层卵白(Lamin)A/C收罗与细胞骨架辘集起来,对细胞分化和功能具有迫切的斟酌作用[25]。Touchstone等[26]磋商发现,模拟微重力效应下骨髓间充质干细胞的LINC复合物(Sun2和Nesprin2)和核纤层卵白(Lamin A/C、Lamin B1)的抒发和卵白水平均缩小。Neelam等[27]磋商泄露,模拟微重力效应下乳腺上皮细胞中间丝角卵白等的抒发变化依赖于完满的LINC复合物。宽泛重力下,骨髓间充质干细胞中的Lamin A/C主要永诀在细胞核顶部区域,在模拟微重力效应下其同期也永诀在基底侧,这一变化可能是细胞骨架的空间重组变成[28]。重力转换导致细胞所受力学载荷的变化可能通过LINC复合物来斟酌细胞核景色和基因抒发模式,额外是与细胞骨架、细胞黏推奖细胞其他机械特征干系的基因[27]。

上述磋商铁心领导,微重力下“细胞骨架-LINC复合物-核纤层”这一力传导阶梯中的结构发生了变化,进而影响细胞对力学载荷的反馈才能。

2微重力下细胞对力学载荷的反馈

诚然干系微重力对细胞结构和功能的影响磋商许多,但对于微重力下细胞力学反馈才能若何变化的报说念极其有限,包括大地模拟微重力效应和真正微重力条款下的磋商。2007年,Bacabac等[29]报说念了在空间遨游试验中对搭载的原代骨细胞施加脉动剪切应力,但缺憾的是由于硬件原因,并莫得获取有用的空间试验组数据。2024年,在国外空间站对成骨细胞施加压力后,转录调控因子YAP抒发水平的增高显贵低于大地加压组[30],长沙专业小程序开发领导微重力下细胞对力学载荷的反馈才能有所着落。

本课题组多年来一直聚焦模拟微重力效应下骨细胞对流体剪切应力的反馈。试验铁心泄露,模拟微重力效应下,流体剪切开导的应力纤维形成被显贵扼制,NO和PGE2等力学明锐因子低于宽泛重力剪切组[31]。张舒等[32]磋商发现,模拟微重力效应下剪切应力开导的成骨细胞PGE2的分泌显贵性着落。Thompson等[33]磋商泄露,加载高频低幅振动可引起骨髓间充质干细胞的YAP入核,但模拟微重力效应组细胞的YAP入核显贵低于宽泛重力组。上述铁心领导,模拟微重力效应下,细胞对力学载荷的反馈才能也有所着落。

需要指出的是,细胞在空间中受力情况的变化特别复杂。微重力下体内静水压的转换会影响细胞的受力现象。

3细胞骨架在微重力下细胞力学感知-传导转换中的作用机制3.1细胞“内-外力均衡”变化反馈(微)重力

1993年,Ingber[34]冷落细胞骨架的“张力整合”或“张拉整合”模子,以为细胞骨架是一个具有预应力的张拉结构,即细胞骨架系统中的微丝与中间丝结构受到拉力,为了与之均衡,微管受到压力。2005年,Wang等[35]冷落细胞内力的“长距离传播”,通常强调了微丝骨架预应力的关节作用。预应力的存在使细胞保捏“病笃状态”(访佛于为了抗争重力保管耸立姿势肌肉保捏肌病笃),与细胞的力学性能密切干系。举例细胞预应力减小时,细胞刚度随之减小[36]。在血管内皮细胞中,通过肌球卵白扼制剂缩小细胞骨架预应力,可阻断血管内皮助长因子(VEGF)介导的eNOs激活与NO分泌[37]。此外,细胞骨架系统可感受基质刚度并斟酌预应力[38]。

在重力下,细胞“外”力(包括静水压、基质刚度)与细胞“内”力(预应力)处于均衡状态。微重力条款下,静水压的覆没冲破了细胞内-外力均衡,“细胞骨架力”发生转换以获取新的细胞“内-外力均衡”稳态,通过这种神情险些统共类型的细胞皆能感知重力的变化[10]。

3.2静水压对细胞骨架及力学感知-传导的影响

细胞可通过斟酌细胞骨架来恰当静水压,进而调控多种细胞功能[39-41]。2007年,Myers等[42]冷落基于张力整合模子的细胞静水压感受机制。成骨细胞、骨髓间充质干细胞和内皮细胞在静水压下肌动卵白应力纤维的永诀、密度和长度会发生转换[43-46]。对MG-63细胞施加静水压后,α-tubulin、肌动卵白和波形卵白解聚[47]。当内皮细胞被施加静水压时,细胞弘扬出较着的伸长和当场取向,皮层变硬,同期产生位于中心的精采应力纤维[48-49]。对肾上皮细胞A6施加静水压,紧密辘集干系卵白Claudin-1不再定位于细胞外侧名义,肌动卵白丝密度显贵缩小[50]。上皮细胞BSC-1在被施加高强度静水压后,微管和应力纤维解聚,细胞变圆[51]。高强度静水压作用下的微管大意,可能导致软骨细胞基质合成减少[52]。在对滑膜成纤维细胞施加静水压 12 h后,细胞肌动卵白变长,应力纤维增多[53]。在7.98 kPa压力下培养东说念主小梁网细胞24 h,发现其细胞骨架塌陷,肌动卵白丝束覆没[54]。

进一步,静水压可调控细胞中包括转录补助因子YAP和TAZ卵白抒发在内的各式细胞功能[55]。Zhou等[56]磋商发现,骨髓间充质干细胞Piezo1离子通说念反馈静水压刺激,激活YAP1,从而促进骨髓间充质干细胞的成骨向分化。该铁心与Sugimoto等[57]的磋商铁心一致,即静水压激活了骨髓间充质干细胞的Piezo1,促进BMP2抒发和细胞的成骨向分化。MAKI等[58]磋商发现,静水压减少了细胞核内H3K9阳性的异染色质。此外,静水压可扼制整合素卵白的抒发[40],从而影响力向细胞外基质的传递。静水压还可增强流体剪切力对骨髓间充质干细胞成骨分化的促进作用[56]。这些铁心标明,静水压影响了细胞的力学明锐性。

现在的磋商主要将静水压算作一种力学刺激,探究其对细胞的影响,尚衰败微重力下静水压在细胞力学感知-传导中的作用磋商。

4预测

细胞骨架赋予细胞的预应力,是细胞反馈力学刺激的启动状态,而细胞预应力现象在不同重力场不同,从而导致了细胞对力学刺激反馈发生变化。然则,细胞对于力学环境的反馈和细胞力学传导并不是由单一、独处的结构或信号通路完成,而是触及广博复杂要素的精确协长入综联结用,包括胞外基质-基质/细胞辘集结构-胞间辘集-跨膜卵白-细胞质膜-细胞骨架-细胞核[59-60],以越过中交错复杂的信号通路收罗[61-62]。现在,越来越多的细胞结构,举例细胞名义的低级纤毛[63-64]、膜骨架Spectrin[65]、核纤层LaminA/C[66]、微丝与微管骨架交联卵白MACF1[67]等已被证明在细胞的力学感知与传导历程中起着迫切作用。这些特殊的结构与微丝、微管在结构与功能上紧密接洽,构成了复杂、多脉络的细胞骨架系统[68]。因此,开展干系的系统深远磋商将有助于论述细胞反馈重力变化的机制。进一步,在空间若何保管细胞力学感知-传导才能(如加多静水压)的干系磋商,将为寻求空间航天员健康留心步骤提供新的想路和行踪。

参考文件

[1]GRIMM D, WISE P, LEBERT M, et al. How and why does the proteome respond to microgravity? [J]. Expert Rev Proteomics, 2011, 8(1): 13-27.

[2]KUMEI Y, MORITA S, KATANO H, et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: Osteopontin, CD44, osteonectin, and alpha-tubulin [J]. Ann N Y Acad Sci, 2006(1090): 311-317.

[3]LUAN H, HUANG Y, LI J, et al. Effect of local vibration and passive exercise on the hormones and neurotransmitters of hypothalamic-pituitary-adrenal axis in hindlimb unloading rats [J]. Microgravity Sci Tec, 2018, 30(4): 483-489.

[4]INGBER D. How cells (might) sense microgravity [J]. FASEB J, 1999, 13(Suppl): S3-15.

[5]VORSELEN D, ROOS WH, MACKINTOSH FC, et al. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells [J].FASEB J, 2014, 28(2): 536-47.

[6]HUGHES-FULFORD M. Function of the cytoskeleton in gravisensing during spaceflight [J]. Adv Space Res, 2003, 32(8): 1585-1593.

[7]LEWIS ML, REYNOLDS JL, CUBANO LA, et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat) [J]. FASEB J, 1998, 12(11): 1007-18.

[8]NA S, COLLIN O, CHOWDHURY F, et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction [J]. Proc Natl Acad Sci U S A, 2008, 105(18): 6626-6631.

[9]HU S, CHEN J, BUTLER JP, et al. Prestress mediates force propagation into the nucleus [J]. Biochem Biophys Res Commun, 2005, 329(2): 423-428.

[10]WU XT, YANG X, TIAN R, et al. Cells respond to space microgravity through cytoskeleton reorganization [J]. FASEB J, 2022, 36(2): e22114.

[11]HUGHES-FULFORD M, LEWIS ML. Effects of microgravity on osteoblast growth activation [J]. Exp Cell Res, 1996, 224(1): 103.

[12]GUIGNANDON A. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/28 cells exposed to space-related conditions [J]. FASEB J, 2001, 15(11): 2036-2038.

[13]NABAVI N, KHANDANI A, CAMIRAND A, et al. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion [J]. Bone, 2011, 49(5): 965-974.

[14]SAMPATH S , SAMPATH SC, MILLAY DP. Myoblast fusion confusion: The resolution begins [J]. Skeletal muscle, 2018, 8(1): 3.

[15]KULESH DA, ANDERSON LH, WILSON B, et al. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant [J]. J Cell Biochem, 1994, 55(4): 530-544.

[16]刘红菊, 贺健, 李景龙, 等. "神舟10号"空间遨游对骨骼肌C2C12成肌细胞可塑性的影响 [J]. 航天医学与医学工程, 2016, 29(6): 391-395.

[17]NING L, CHENGZHI W, SHUJIN S, et al. Microgravity-induced alterations of inflammation-related mechanotrans-duction in endothelial cells on Board SJ-10 satellite [J]. Front Physiol, 2018(9): 1025.

[18]KAPITONOVA MY, MUID S, FROEMMING GR, et al. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC [J]. Malays J Pathol, 2012, 34(2): 103-113.

[19]BAIO J, MARTINEZ AF, SILVA I, et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties [J]. NPJ Microgravity, 2018(4): 13.

[20]SCIOLA L, COGOLI-GREUTER M, COGOLI A, et al. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells [J]. Adv Space Res, 1999, 24(6): 801-805.

[21]MELONI MA, GALLERI G, PANI G, et al. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111 [J]. Cytoskeleton, 2011, 68(2): 125-137.

[22]MONTICONE M, LIU Y, PUJIC N, et al. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure [J]. J Cell Biochem, 2010, 111(2): 442-452.

[23]NEUHUBER B, GALLO G, HOWARD L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype [J]. J Neurosci Res, 2004, 77(2): 192-204.

[24]SHAKA S, CARPO N, TRAN V, et al. Space microgravity alters neural stem cell division: Implications for brain cancer research on earth and in space [J]. Int J Mol Sci, 2022, 23(22): 14320.

[25]UZER G, RUBIN CT, RUBIN J. Cell mechanosensitivity is enabled by the LINC nuclear complex [J]. Curr Mol Biol Rep, 2016, 2(1): 36-47.

[26]TOUCHSTONE H, BRYD R, LOISATE S, et al. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex [J]. NPJ Microgravity, 2019(5): 11.

[27]NEELAM S, RICHARDSON B, BARKER R, et al. Changes in nuclear shape and gene expression in response to simulated microgravity are LINC complex-dependent [J]. Int J Mol Sci, 2020, 21(18): 6762.

[28]KOAYKUL C, KIM MH, KAWAHARA Y, et al. Alterations in nuclear lamina and the cytoskeleton of bone marrow-derived human mesenchymal stem cells cultured under simulated microgravity conditions [J]. Stem Cells Dev, 2019, 28(17): 1167-1176.

[29]BACABAC RG, VAN LOON JJWA, DE BLIECK-HOGERVORST JMA, et al. Microgravity and bone cell mechanosensitivity: FLOW experiment during the DELTA mission [J]. Microgravity Sci Tec, 2007, 19(5): 133-137.

[30]WUBSHET NH, CAI G, CHEN SJ, et al. Cellular mechanotransduction of human osteoblasts in microgravity [J]. NPJ Microgravity, 2024, 10(1): 35.

[31]YANG X, SUN LW, WU XT, et al. Effect of simulated microgravity on osteocytes responding to fluid shear stress [J]. Acta Astronautica, 2013(84): 237-243.

[32]张舒, 吴兴裕, 李莹辉, 等. 不同重力环境对流体剪切应力致成骨细胞前哨腺素E2分泌的影响 [J]. 中华航空航天医学杂志, 2000(4): 249.

[33]THOMPSON M, WOODS K, NEWBERG J, et al. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity [J]. NPJ Microgravity, 2020, 6(1): 35.

[34]INGBER DE. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton [J]. J Cell Sci, 1993, 104 ( Pt 3): 613-627.

[35]WANG N, SUO Z. Long-distance propagation of forces in a cell [J]. Biochem Biophys Res Commun, 2005, 328(4): 1133-1138.

[36]ZHANG G, CHANG Y, FAN N, et al. Study of the effect of cell prestress on the cell membrane penetration behavior by atomic force microscopy [J]. Micromachines, 2023, 14(2): 397.

[37]BHATTACHARYYA A, BARBEE KA. Vascular endothelial cell morphology and alignment regulate VEGF-induced endothelial nitric oxide synthase activation [J/OL]. Cytoskeleton, 2024, doi: 101002/cm.21872.

[38]MITROSSILIS D, FOUCHARD J, GUIROY A, et al. Single-cell response to stiffness exhibits muscle-like behavior [J]. Proc Natl Acad Sci U S A, 2009, 106(43): 18243-18248.

[39]KAO YC, CHEN ZH, WANG WY, et al. Hydrostatic pressure promotes migration and filamin-A activation in fibroblasts with increased p38 phosphorylation and TGF-β production [J]. Biochem Biophys Res Commun, 2021(568): 15-22.

[40]SCHWARTZ EA, BIZIOS R, MEDOW MS, et al. Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins [J]. Circ Res, 1999, 84(3): 315-322.

[41]SHIN HY, GERRITSEN ME, BIZIOS R. Regulation of endothelial cell proliferation and apoptosis by cyclic pressure [J]. Ann Biomed Eng, 2002, 30(3): 297-304.

软件开发

[42]MYERS KA, RATTNER JB, SHRIVE NG, et al. Hydrostatic pressure sensation in cells: Integration into the tensegrity model [J]. Biochem Cell Biol, 2007, 85(5): 543-551.

[43]MARTIN JS, BROWN LS, HABERSTROH KM. Microfilaments are involved in renal cell responses to sustained hydrostatic pressure [J]. J Urol, 2005, 173(4): 1410-1417.

[44]MüLLER-MARSCHHAUSEN K, WASCHKE J, DRENCKHAHN D. Physiological hydrostatic pressure protects endothelial monolayer integrity [J]. Am J Physiol Cell Physiol, 2008, 294(1): C324-32.

[45]SALWEN SA, SZAROWSKI DH, TURNER JN, et al. Three-dimensional changes of the cytoskeleton of vascular endothelial cells exposed to sustained hydrostatic pressure [J]. Med Biol Eng Comput, 1998, 36(4): 520-527.

[46]THOUMINE O, NEREM RM, GIRARD PR. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells [J]. In Vitro Cell Dev Biol Anim, 1995, 31(1): 45-54.

[47]HASKIN C, CAMERON I, ATHANASIOU K. Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells [J]. Biochem Cell Biol, 1993, 71(1-2): 27-35.

[48]PRYSTOPIUK V, FELS B, SIMON CS, et al. A two-phase response of endothelial cells to hydrostatic pressure [J]. J Cell Sci, 2018, 131(12): jcs206920.

[49]SATO M, OHASHI T. Biorheological views of endothelial cell responses to mechanical stimuli [J]. Biorheology, 2005, 42(6): 421-441.

[50]TOKUDA S, MIYAZAKI H, NAKAJIMA K, et al. Hydrostatic pressure regulates tight junctions, actin cytoskeleton and transcellular ion transport [J]. Biochem Biophys Res Commun, 2009, 390(4): 1315-1321.

[51]BOURNS B, FRANKLIN S, CASSIMERIS L, et al. High hydrostatic pressure effects in vivo: Changes in cell morphology, microtubule assembly, and actin organization [J]. Cell Motil Cytoskeleton, 1988, 10(3): 380-390.

[52]JORTIKKA MO, PARKKINEN JJ, INKINEN RI, et al. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure [J]. Arch Biochem Biophys, 2000, 374(2): 172-180.

[53]WU MJ, GU ZY, SUN W. Effects of hydrostatic pressure on cytoskeleton and BMP-2, TGF-beta, SOX-9 production in rat temporomandibular synovial fibroblasts [J]. Osteoarthritis Cartilage, 2008, 16(1): 41-47.

[54]YANG X, LIU B, BAI Y, et al. Elevated pressure downregulates ZO-1 expression and disrupts cytoskeleton and focal adhesion in human trabecular meshwork cells [J]. Mol Vis, 2011(17): 2978-2985.

[55]ZOI I, GARGALIONIS AN, PAPAVASSILIOU KA, et al. Polycystin-1 and hydrostatic pressure are implicated in glioblastoma pathogenesis in vitro [J]. J Cell Mol Med, 2022, 26(5): 1699-709.

[56]ZHOU Y, GUO P, JIN Z, et al. Fluid shear force and hydrostatic pressure jointly promote osteogenic differentiation of BMSCs by activating YAP1 and NFAT2 [J]. Biotechnol J, 2024, 19(4): e2300714.

[57]SUGIMOTO A, MIYAZAKI A, KAWARABAYASHI K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells [J]. Sci Rep, 2017, 7(1): 17696.

[58]MAKI K, NAVA MM, VILLENEUVE C, et al. Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling [J]. J Cell Sci, 2021, 134(2): jcs247643.

[59]MASIELLO MG, VERNA R, CUCINA A, et al. Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation [J]. Prog Biophys Mol Biol, 2018(134): 55-67.

[60]INGBER DE. Cellular mechanotransduction: Putting all the pieces together again [J]. FASEB J, 2006, 20(7): 811-827.

[61]THOMPSON WR, RUBIN CT, RUBIN J. Mechanical regulation of signaling pathways in bone [J]. Gene, 2012, 503(2): 179-193.

[62]DOGTEROM M, KOENDERINK GH. Actin-microtubule crosstalk in cell biology [J]. Nat Rev Mol Cell Biol, 2019, 20(1): 38-54.

[63]SHI W, ZHANG Y, CHEN K, et al. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization [J]. Bone, 2020(136): 115346.

[64]DING D, YANG X, LUAN HQ, et al. The microgravity induces the ciliary shortening and an increased ratio of anterograde/retrograde intraflagellar transport of osteocytes [J]. Biochem Biophys Res Commun, 2020, 530(1): 167-172.

[65]WU XT, SUN LW, YANG X, et al. The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes [J]. Sci Rep, 2017(7): 40940.

[66]BAO H, LI HP, SHI Q, et al. Lamin A/C negatively regulated by miR-124-3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats [J]. Acta Physiol, 2020, 228(3): e13374.

[67]HU L, YIN C, CHEN D, et al. MACF1 promotes osteoblast differentiation by sequestering repressors in cytoplasm [J]. Cell Death Differ, 2021, 28(7): 2160-2178.

[68]GOULD NR, TORRE OM, LESER JM, et al. The cytoskeleton and connected elements in bone cell mechano-transduction [J]. Bone, 2021(149): 115971.

本文刊登于《医用生物力学》2024年第39卷第3期:387-392页。

上期开出前区012路比为1:2:2,近十期0路号码开出15次,1路开出16次,2路开出19次,本期关注012路比3:2:0。

上期开出奇偶比3:2,近10期奇偶比为26:24,本期前区推荐奇偶比1:4。

接洽神情:17366638913(微信同号)生物力学 陈工小程序开发价格

发布于:浙江省

Powered by 长沙专业小程序开发 @2013-2022 RSS地图 HTML地图

Copyright Powered by365站群 © 2013-2024 云迈科技 版权所有